metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,9-Dimethyl-1,10-phenanthrolinium bis(pyridine-2.6-dicarboxylato- $\kappa^{3}O, N, O'$)ferrate(III) dihydrate

Hossein Aghabozorg,^a* Elahe Sadrkhanlou,^a Janet Soleimannejad^b and Harry Adams^c

^aDepartment of Chemistry, Teacher Training University, 49 Mofateh Avenue 15614, Tehran, Iran, ^bDepartment of Chemistry, Ilam University, Ilam, Iran, and ^cDepartment of Chemistry, Sheffield University, Sheffield S3 7HF, England Correspondence e-mail: haghabozorg@yahoo.com

Received 25 April 2007; accepted 23 May 2007

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.006 Å; R factor = 0.058; wR factor = 0.165; data-to-parameter ratio = 15.3.

The title compound, $(C_{14}H_{13}N_2)[Fe(C_7H_3NO_4)_2]\cdot 2H_2O$ or (dmpH)[Fe(pydc)₂]·2H₂O (dmp is 2,9-dimethyl-1,10-phenanthroline and pydcH₂ is pyridine-2,6-dicarboxylic acid), is a sixcoordinate Fe^{III} complex obtained by reacting neocuproine (dmp), dipicolinic acid $(pvdcH_2)$ and iron(II) chloride. The anionic six-coordinate complex has a distorted octahedral geometry and is connected to its counter-cation by a number of intermolecular interactions, forming infinite one-dimensional chains in the [010] direction. Ion pairing, metal-ligand coordination and van der Waals forces, as well as intermolecular X-H···O hydrogen bonds (X = O, N and C) and π - π stacking interactions [with centroid-to-centroid separations of 3.531 and 3.457 Å, shortest interplanar distances of 3.355 and 3.449 Å, and interplanar angles of 1.89 and 5.45°], result in a three-dimensional framework.

Related literature

There are several reports on proton transfer between a carboxylic acid and a heterocyclic amine, and on the ability of the resulting self-associated proton-transfer systems to react with metal ions, affording transition metal complexes (Aghabozorg et al., 2006; Zhao et al., 2005).

Experimental

Crystal data

(C14H13N2)[Fe(C7H3NO4)2]·2H2O $M_r = 631.35$ Monoclinic, $P2_1/n$ a = 8.9535 (14) Åb = 18.607(3)Å c = 15.674 (2) Å $\beta = 94.826 \ (3)^{\circ}$

Data collection

Bruker SMART diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1998) $T_{\min} = 0.737, T_{\max} = 0.950$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	390 parameters
$wR(F^2) = 0.165$	H-atom parameters constrained
S = 0.89	$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
5986 reflections	$\Delta \rho_{\rm min} = -0.81 \text{ e } \text{\AA}^{-3}$

V = 2602.1 (7) Å³

Mo $K\alpha$ radiation $\mu = 0.65 \text{ mm}^{-3}$

 $0.50 \times 0.40 \times 0.08 \text{ mm}$

29654 measured reflections

5986 independent reflections

2776 reflections with $I > 2\sigma(I)$

T = 150 (2) K

 $R_{\rm int} = 0.127$

Z = 4

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O9-H9B\cdots O10^{i}$	0.95	2.01	2.907 (5)	157
O9−H9A···O5	0.95	1.99	2.866 (4)	153
$O10-H10A\cdots O7^{ii}$	0.95	2.11	2.964 (4)	150
C3−H3···O7 ⁱⁱⁱ	0.95	2.45	3.304 (5)	150
C12−H12···O2 ^{iv}	0.95	2.39	3.263 (5)	152
$C17 - H17 \cdots O9^{iv}$	0.95	2.41	3.357 (5)	175
Symmetry codes: (i) $-x$	$+\frac{1}{2}v - \frac{1}{2} - 7$	$+\frac{3}{2}$ (ii) $r+1$	v_{7} (iii) $x + \frac{1}{2} - y$	$v + \frac{3}{2} - \frac{1}{2}$ (iv)

 $+\frac{1}{2}, -y + \frac{1}{2}, z$ $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Financial support by the Teacher Training and Ilam Universities is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2100).

References

- Aghabozorg, H., Ghasemikhah, P., Ghadermazi, M. & Sheshmani, S. (2006). Acta Cryst E62 m2835-m2837.
- Bruker (1998). SAINT-Plus (Version 6.01), SMART (Version 5.059) and SHELXTL (Version 5.10). Bruker AXS, Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1998). SADABS. Version 2.01. University of Göttingen, Germany
- Zhao, Q.-H., Zhang, M.-S. & Fang, R.-B. (2005). Acta Cryst. E61, m2575m2577

Acta Cryst. (2007). E63, m1760 [doi:10.1107/S1600536807025081]

2,9-Dimethyl-1,10-phenanthrolinium bis(pyridine-2,6-dicarboxylato- $\kappa^3 O, N, O'$)ferrate(III) dihydrate

H. Aghabozorg, E. Sadrkhanlou, J. Soleimannejad and H. Adams

Comment

Continuing our research on proton-transfer compounds, we reached a system which is highly soluble in polar solvents. This compound has not been crystallized until now, but its metal-organic derivatives can be obtained as suitable crystals. In this report, the crystal structure of the iron(III) derivative is described.

The Fe^{III} ion is located at the centre of a distorted octahedral arrangement (Fig. 1). The O1—Fe1—O5—C8 [92.4 (3)°], O1—Fe1—O8—C14 [-91.4 (3)°], O8—Fe1—O1—C1 [-96.6 (3)°] and O8—Fe1—O4—C7 [98.1 (3)°] torsion angles, and O1—Fe1—O8 [95.78 (12)°] and O4—Fe1—O5 [94.88 (11)°] bond angles indicate that the dianionic pydc^{2–} units are almost perpendicular to each other. The important characteristic of the crystal structure is the infinite one dimensional chains based on [010] vector. Figure 2 shows the wavy chains of [Fe(pydc)₂][–] complex anions formed through the C—H…O interactions, in which the $R_2^2(10)$ and $C_2^2(16)$ graph set can be observed. The space between two chains is filled with dmpH⁺ cations and lattice water molecules. Hydrogen bonds play an important role in stabilizing the crystal structure.

Other intermolecular interactions exist between aromatic cations and the ligands bonded to the metal center. The centroid to centroid separation between the π -systems of the cation, labeled as B, and the anion, A1 and A2, are 3.531 and 3.457 Å, respectively (Fig. 3). The shortest interplanar distances for A1/B (3.355 Å) and A2/B (3.449 Å) and their related interplanar angles, 1.89 and 5.45°, respectively, confirm the effective π - π stacking interactions. Therefore, in the formation of this Fe^{III} complex, ion pairing, metal-ligand coordinations, hydrogen-bonding and π - π stacking as well as van der Waals forces, play important roles in the construction of the observed three-dimensional network.

Experimental

A solution of FeCl_2 (50 mg, 0.25 mmol) in water (10 ml) was added to 10 ml of an aqueous solution of dmp (105 mg, 0.5 mmol) and pydcH₂ (69 mg, 0.5 mmol). Pale yellow crystals of the title compound were obtained after allowing the mixture to stand for a week at room temperature.

Refinement

C and N-bonded H atoms were positioned geometrically and refined using a riding model (including torsional freedom for methyl groups), with C—H = 0.95–0.98 Å, and with $U_{iso}(H)$ constrained to be 1.2 (1.5 for methyl groups) times U_{eq} of the carrier atom. H atoms for water molecules were found in a difference map and their parameters constrained to fit an idealized geometry: O—H = 0.95 Å and $U_{iso}(H) = 1.2U_{iso}(\text{carrier O})$.

Figures

Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. A view of the chains formed by C—H···O interactions; water molecules (yellow and purple) are located in the space between chains and connected *via* O—H···O hydrogen bonds; $dmpH^+$ cations are omitted for clarity.

Fig. 3. Representation of separations between cation and anions.

2,9-Dimethyl-1,10-phenanthrolinium bis(pyridine-2,6-dicarboxylato- $\kappa^3 O, N, O'$) ferrate(III) dihydrate

Crystal data	
$(C_{14}H_{13}N_2)[Fe(C_7H_3N_1O_4)_2]\cdot 2H_2O$	$F_{000} = 1300$
$M_r = 631.35$	$D_{\rm x} = 1.612 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/n$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 3591 reflections
<i>a</i> = 8.9535 (14) Å	$\theta = 2.5 - 25.3^{\circ}$
b = 18.607 (3) Å	$\mu = 0.65 \text{ mm}^{-1}$
c = 15.674 (2) Å	T = 150 (2) K
$\beta = 94.826 \ (3)^{\circ}$	Plate, pale yellow
V = 2602.1 (7) Å ³	$0.50\times0.40\times0.08~mm$
<i>Z</i> = 4	

Data collection

Bruker SMART diffractometer	5986 independent reflections
Radiation source: fine-focus sealed tube	2776 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.127$
Detector resolution: 100 pixels mm ⁻¹	$\theta_{\text{max}} = 27.7^{\circ}$
T = 150(2) K	$\theta_{\min} = 1.7^{\circ}$
ω scans	$h = -11 \rightarrow 11$

Absorption correction: multi-scan	L = 24.22
(SADABS; Sheldrick, 1998)	$\kappa = -24 \rightarrow 23$
$T_{\min} = 0.737, \ T_{\max} = 0.950$	$l = -20 \rightarrow 20$
29654 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.165$	$w = 1/[\sigma^2(F_o^2) + (0.0795P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 0.89	$(\Delta/\sigma)_{\rm max} = 0.001$
5986 reflections	$\Delta \rho_{max} = 0.55 \text{ e } \text{\AA}^{-3}$
390 parameters	$\Delta \rho_{\rm min} = -0.81 \ e \ {\rm \AA}^{-3}$
Primary atom gita logation: structure inverient direct	

Primary atom site location: structure-invariant direct methods Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Fe1	0.00816 (6)	0.59166 (3)	0.79981 (3)	0.03083 (19)
N1	0.0103 (3)	0.59937 (17)	0.66923 (19)	0.0271 (7)
N2	0.0118 (3)	0.60327 (17)	0.93011 (19)	0.0290 (8)
N3	0.1130 (3)	0.85237 (17)	1.1817 (2)	0.0308 (8)
НЗА	0.1723	0.8278	1.2255	0.037*
N4	0.3022 (3)	0.74239 (18)	1.1490 (2)	0.0337 (8)
01	0.1666 (3)	0.66723 (15)	0.78243 (16)	0.0374 (7)
O2	0.2907 (3)	0.72973 (16)	0.68816 (17)	0.0453 (8)
O3	-0.2573 (3)	0.46501 (16)	0.63913 (18)	0.0467 (8)
O4	-0.1384 (3)	0.51698 (14)	0.75482 (16)	0.0351 (7)
O5	0.1630 (3)	0.52142 (15)	0.84458 (17)	0.0382 (7)
O6	0.2980 (3)	0.47772 (17)	0.9602 (2)	0.0555 (9)
O7	-0.2787 (3)	0.72774 (17)	0.91050 (18)	0.0516 (9)
O8	-0.1594 (3)	0.66250 (15)	0.81730 (16)	0.0390 (7)
09	0.1840 (3)	0.43660 (17)	0.69343 (19)	0.0573 (9)
H9B	0.1065	0.4021	0.6964	0.069*
H9A	0.1900	0.4509	0.7518	0.069*
O10	0.4860 (3)	0.80382 (17)	0.80094 (18)	0.0598 (9)
H10B	0.5093	0.8536	0.8009	0.072*
H10A	0.5375	0.7847	0.8514	0.072*
C1	0.1945 (4)	0.6862 (2)	0.7062 (3)	0.0352 (10)
C2	0.0991 (4)	0.6478 (2)	0.6361 (2)	0.0295 (9)
C3	0.0992 (4)	0.6569 (2)	0.5490 (2)	0.0361 (10)
Н3	0.1638	0.6907	0.5256	0.043*
C4	0.0022 (4)	0.6152 (2)	0.4967 (3)	0.0377 (10)
H4	-0.0015	0.6203	0.4363	0.045*

C5	-0.0902 (4)	0.5654 (2)	0.5332 (3)	0.0349 (10)
Н5	-0.1581	0.5368	0.4979	0.042*
C6	-0.0822 (4)	0.5584 (2)	0.6199 (2)	0.0294 (9)
C7	-0.1676 (4)	0.5071 (2)	0.6735 (3)	0.0335 (10)
C8	0.2013 (4)	0.5167 (2)	0.9265 (3)	0.0356 (10)
C9	0.1112 (4)	0.5660 (2)	0.9794 (3)	0.0311 (9)
C10	0.1242 (5)	0.5746 (2)	1.0666 (3)	0.0384 (11)
H10	0.1962	0.5482	1.1020	0.046*
C11	0.0282 (5)	0.6232 (2)	1.1014 (3)	0.0416 (11)
H11	0.0336	0.6296	1.1617	0.050*
C12	-0.0744 (5)	0.6620 (2)	1.0500 (2)	0.0382 (11)
H12	-0.1390	0.6956	1.0739	0.046*
C13	-0.0806 (4)	0.6508 (2)	0.9628 (2)	0.0328 (10)
C14	-0.1835 (4)	0.6849 (2)	0.8936 (3)	0.0357 (10)
C15	0.0199 (5)	0.9230 (3)	1.2958 (3)	0.0496 (13)
H15C	0.0366	0.8793	1.3304	0.074*
H15B	-0.0775	0.9438	1.3062	0.074*
H15A	0.0994	0.9578	1.3118	0.074*
C16	0.0215 (4)	0.9047 (2)	1.2041 (3)	0.0404 (11)
C17	-0.0667 (5)	0.9402 (2)	1.1396 (3)	0.0454 (12)
H17	-0.1329	0.9774	1.1539	0.054*
C18	-0.0577 (4)	0.9213 (2)	1.0562 (3)	0.0457 (12)
H18	-0.1187	0.9456	1.0128	0.055*
C19	0.0387 (4)	0.8672 (2)	1.0329 (3)	0.0359 (10)
C20	0.0586 (5)	0.8467 (2)	0.9465 (3)	0.0442 (11)
H20	0.0003	0.8696	0.9009	0.053*
C21	0.1576 (5)	0.7959 (2)	0.9285 (3)	0.0428 (11)
H21	0.1706	0.7845	0.8705	0.051*
C22	0.2434 (4)	0.7591 (2)	0.9956 (3)	0.0358 (10)
C23	0.3494 (5)	0.7056 (2)	0.9805 (3)	0.0397 (11)
H23	0.3669	0.6928	0.9235	0.048*
C24	0.4261 (5)	0.6725 (2)	1.0473 (3)	0.0429 (11)
H24	0.4982	0.6367	1.0373	0.052*
C25	0.3988 (4)	0.6913 (2)	1.1322 (3)	0.0390 (11)
C26	0.4740 (5)	0.6527 (3)	1.2077 (3)	0.0553 (13)
H26C	0.4998	0.6871	1.2539	0.083*
H26B	0.5655	0.6295	1.1911	0.083*
H26A	0.4061	0.6162	1.2275	0.083*
C27	0.2274 (4)	0.7761 (2)	1.0811 (2)	0.0323 (9)
C28	0.1244 (4)	0.8313 (2)	1.0993 (2)	0.0321 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0346 (3)	0.0349 (4)	0.0232 (3)	-0.0007 (3)	0.0037 (2)	-0.0011 (3)
N1	0.0287 (17)	0.0283 (19)	0.0244 (16)	0.0021 (15)	0.0027 (13)	-0.0016 (15)
N2	0.0318 (18)	0.032 (2)	0.0233 (17)	-0.0043 (15)	0.0002 (14)	-0.0010 (15)
N3	0.0239 (17)	0.036 (2)	0.0317 (19)	-0.0033 (15)	-0.0006 (14)	0.0042 (16)

N4	0.0345 (19)	0.034 (2)	0.0315 (19)	-0.0059 (16)	-0.0070 (15)	-0.0004 (16)
01	0.0468 (17)	0.0402 (18)	0.0247 (15)	-0.0065 (14)	-0.0004 (12)	-0.0026 (13)
02	0.0473 (18)	0.046 (2)	0.0425 (18)	-0.0196 (16)	0.0046 (14)	0.0031 (15)
O3	0.0488 (19)	0.044 (2)	0.0463 (19)	-0.0172 (16)	-0.0025 (15)	-0.0075 (16)
O4	0.0382 (16)	0.0403 (18)	0.0271 (15)	-0.0050 (13)	0.0042 (12)	0.0022 (13)
05	0.0404 (17)	0.0379 (18)	0.0368 (17)	0.0023 (14)	0.0058 (13)	-0.0042 (14)
O6	0.053 (2)	0.052 (2)	0.059 (2)	0.0143 (17)	-0.0112 (16)	0.0048 (17)
07	0.0519 (19)	0.054 (2)	0.049 (2)	0.0192 (17)	0.0067 (15)	-0.0050 (17)
08	0.0437 (17)	0.0455 (19)	0.0271 (16)	0.0076 (14)	-0.0010 (13)	-0.0008 (14)
09	0.069 (2)	0.054 (2)	0.050 (2)	-0.0097 (18)	0.0111 (17)	-0.0099 (17)
O10	0.084 (3)	0.042 (2)	0.050 (2)	0.0052 (18)	-0.0086 (18)	-0.0004 (17)
C1	0.035 (2)	0.031 (3)	0.039 (3)	0.004 (2)	0.0014 (19)	0.003 (2)
C2	0.029 (2)	0.029 (2)	0.031 (2)	0.0010 (18)	0.0052 (17)	0.0006 (19)
C3	0.040 (2)	0.036 (3)	0.034 (2)	0.002 (2)	0.0096 (19)	0.008 (2)
C4	0.047 (3)	0.040 (3)	0.026 (2)	0.010 (2)	0.0002 (19)	0.000 (2)
C5	0.038 (2)	0.031 (2)	0.035 (2)	0.0081 (19)	-0.0026 (19)	-0.005 (2)
C6	0.028 (2)	0.028 (2)	0.032 (2)	0.0048 (18)	0.0011 (17)	-0.0052 (19)
C7	0.034 (2)	0.034 (3)	0.033 (2)	0.005 (2)	0.0022 (18)	0.000 (2)
C8	0.031 (2)	0.035 (3)	0.040 (3)	-0.008(2)	0.0027 (19)	0.000 (2)
С9	0.034 (2)	0.029 (2)	0.031 (2)	-0.0057 (18)	0.0021 (18)	0.0056 (19)
C10	0.043 (3)	0.041 (3)	0.030 (2)	-0.015 (2)	-0.0042 (19)	0.006 (2)
C11	0.056 (3)	0.047 (3)	0.021 (2)	-0.021(2)	0.002 (2)	-0.003(2)
C12	0.044 (3)	0.040 (3)	0.032(2)	-0.008(2)	0.007 (2)	-0.010(2)
C13	0.034 (2)	0.033 (3)	0.032(2)	-0.0094(19)	0.0051 (18)	-0.001(2)
C14	0.037(2)	0.032(3)	0.032(2)	0.002 (2)	0.0032(19)	-0.001(2)
C15	0.037(2)	0.060 (3)	0.049(3)	0.002(2)	0.015(2)	-0.011(3)
C16	0.027(2)	0.045(3)	0.050(3)	-0.006(2)	0.008(2)	-0.003(2)
C17	0.029(2)	0.044(3)	0.063(3)	0.000(2)	0.005(2)	0.000(2)
C18	0.029(2)	0.044(3)	0.062(3)	0.002(2)	-0.004(2)	0.000(3)
C19	0.028(2)	0.036(3)	0.002(3)	-0.0035(19)	-0.0033(18)	0.012(2)
C20	0.020(2)	0.030(3)	0.032(3)	-0.001(2)	-0.013(2)	0.000(2)
C21	0.058(3)	0.041(3)	0.032(3)	-0.007(2)	-0.002(2)	0.007(2)
C22	0.020(2)	0.034(3)	0.029(2) 0.034(2)	-0.010(2)	0.002(2)	-0.003(2)
C23	0.046(3)	0.039(3)	0.035(3)	-0.010(2)	0.009(2)	-0.004(2)
C24	0.044(3)	0.034(3)	0.055(3)	-0.002(2)	0.003(2)	-0.004(2)
C25	0.036(2)	0.035(3)	0.001(3)	-0.005(2)	-0.006(2)	0.001(2)
C26	0.050(2)	0.035(3)	0.057(3)	0.009(3)	-0.007(2)	0.001(2) 0.004(3)
C27	0.002(2)	0.031(2)	0.035(2)	-0.005(2)	0.0004(17)	-0.001(2)
C28	0.030(2)	0.034(3)	0.032(2)	-0.0071(19)	0.0009(17)	0.001(2)
020	0.000 (1)	0.00 (0)	0.002 (2)	0.0071 (17)	0.0003 (17)	0.0021 (13)
Geometric par	rameters (Å, °)					
Fe1—O5		1.990 (3)	C8—	С9	1.51	4 (5)
Fe1—O4		1.999 (3)	С9—	C10	1.37	1 (5)
Fe1—O1		2.032 (3)	C10–	C11	1.39	0 (6)
Fe1—O8		2.033 (3)	C10–	-H10	0.95	500
Fe1—N2		2.051 (3)	C11–	C12	1.37	(5)
Fe1—N1		2.054 (3)	C11–	-H11	0.95	500
N1—C6		1.325 (5)	C12–	C13	1.37	79 (5)

N1—C2	1.335 (4)	C12—H12	0.9500
N2—C9	1.325 (5)	C13—C14	1.503 (5)
N2—C13	1.342 (5)	C15—C16	1.479 (5)
N3—C16	1.338 (5)	C15—H15C	0.9800
N3—C28	1.362 (5)	C15—H15B	0.9800
N3—H3A	0.9501	C15—H15A	0.9800
N4—C25	1.326 (5)	C16—C17	1.395 (6)
N4—C27	1.362 (5)	C17—C18	1.363 (6)
O1—C1	1.290 (4)	С17—Н17	0.9500
O2—C1	1.232 (5)	C18—C19	1.395 (6)
O3—C7	1.216 (4)	C18—H18	0.9500
O4—C7	1.292 (4)	C19—C28	1.408 (5)
O5—C8	1.303 (4)	C19—C20	1.432 (5)
O6—C8	1.215 (5)	C20—C21	1.341 (6)
O7—C14	1.213 (4)	C20—H20	0.9500
O8—C14	1.301 (4)	C21—C22	1.424 (6)
О9—Н9В	0.9499	C21—H21	0.9500
О9—Н9А	0.9497	C22—C27	1.396 (5)
O10—H10B	0.9500	C22—C23	1.409 (5)
O10—H10A	0.9502	C23—C24	1.351 (6)
C1—C2	1.514 (5)	С23—Н23	0.9500
C2—C3	1.375 (5)	C24—C25	1.418 (6)
C3—C4	1.381 (5)	C24—H24	0.9500
С3—Н3	0.9500	C25—C26	1.494 (6)
C4—C5	1.396 (5)	C26—H26C	0.9800
С4—Н4	0.9500	C26—H26B	0.9800
C5—C6	1.361 (5)	С26—Н26А	0.9800
С5—Н5	0.9500	C27—C28	1.426 (5)
C6—C7	1.520 (5)		
O5 Ee1 $O4$	04.88 (11)	C12 C11 C10	121 1 (4)
05 = 101 = 04	94.00 (11)	$C_{12} = C_{11} = C_{10}$	121.1 (4)
04 Ee1 01	151 51 (10)	C10 C11 H11	119.4
04 - 161 - 01 $05 - E_{e1} - 08$	151.51(10) 151.48(11)	C_{10} C_{11} C_{12} C_{13}	119.4
03—rei— 08	131.40(11)	$C_{11} = C_{12} = C_{13}$	118.0 (4)
04 - Fe1 - 08	91.05 (11)	C12—C12—H12	121.0
$O_1 = Fe_1 = O_8$	95.78 (12) 76.47 (12)	C13 - C12 - H12	121.0
O_3 —FeI—N2	/0.4/ (12)	$N_2 = C_{13} = C_{12}$	120.2(4)
O4—FeI—N2	112.29(11)	$N_2 = C_{13} = C_{14}$	111.3(3)
OI_FEI_N2	96.20 (11) 75.27 (12)	C12 - C13 - C14	128.5 (4)
08—FeI—N2	/5.3/(12)	07-014-08	125.8 (4)
05—FeI—NI	109.44 (11)	0/014013	121.3 (4)
04—FeI—NI	/5.98 (11)	08-014-013	112.9 (3)
OI—FeI—NI	/5./0(11)	CI6—CI5—HISC	109.5
08—FeI—NI	99.08 (11)	С16—С15—Н15В	109.5
N2—Fe1—N1	169.85 (12)	H15C—C15—H15B	109.5
C6—N1—C2	121.6 (3)	C16—C15—H15A	109.5
C6—N1—Fe1	118.9 (3)	H15C—C15—H15A	109.5
C2—N1—Fe1	119.4 (3)	H15B—C15—H15A	109.5
C9—N2—C13	121.9 (3)	N3—C16—C17	118.5 (4)
C9—N2—Fe1	118.6 (3)	N3—C16—C15	118.6 (4)

C13—N2—Fe1	119.4 (3)	C17—C16—C15	123.0 (4)
C16—N3—C28	123.7 (4)	C18—C17—C16	119.8 (4)
C16—N3—H3A	118.6	С18—С17—Н17	120.1
C28—N3—H3A	117.7	С16—С17—Н17	120.1
C25—N4—C27	117.5 (3)	C17—C18—C19	121.7 (4)
C1-O1-Fe1	120.4 (3)	C17—C18—H18	119.1
C7—O4—Fe1	121.3 (3)	C19—C18—H18	119.1
C8—O5—Fe1	120.6 (3)	C18—C19—C28	117.3 (4)
C14—O8—Fe1	120.9 (3)	C18—C19—C20	124.7 (4)
Н9В—О9—Н9А	97.1	C28—C19—C20	118.0 (4)
H10B-010-H10A	105.9	C21—C20—C19	121.6 (4)
O2—C1—O1	125.9 (4)	C21—C20—H20	119.2
O2—C1—C2	120.4 (4)	С19—С20—Н20	119.2
O1—C1—C2	113.7 (3)	C20—C21—C22	120.5 (4)
N1—C2—C3	121.3 (4)	C20—C21—H21	119.7
N1—C2—C1	110.7 (3)	C22—C21—H21	119.7
C3—C2—C1	127.9 (4)	C27—C22—C23	116.5 (4)
C2—C3—C4	117.8 (4)	C27—C22—C21	120.5 (4)
С2—С3—Н3	121.1	C23—C22—C21	123.0 (4)
С4—С3—Н3	121.1	C24—C23—C22	119.8 (4)
C3—C4—C5	119.6 (4)	C24—C23—H23	120.1
C3—C4—H4	120.2	С22—С23—Н23	120.1
C5—C4—H4	120.2	C23—C24—C25	119.9 (4)
C6—C5—C4	119.3 (4)	C23—C24—H24	120.0
С6—С5—Н5	120.4	C25—C24—H24	120.0
C4—C5—H5	120.4	N4—C25—C24	122.0 (4)
N1—C6—C5	120.4 (4)	N4—C25—C26	116.5 (4)
N1—C6—C7	110.9 (3)	C24—C25—C26	121.5 (4)
C5—C6—C7	128.7 (4)	C25—C26—H26C	109.5
O3—C7—O4	126.9 (4)	C25—C26—H26B	109.5
O3—C7—C6	120.2 (4)	H26C—C26—H26B	109.5
O4—C7—C6	112.8 (4)	C25—C26—H26A	109.5
O6—C8—O5	126.0 (4)	H26C—C26—H26A	109.5
O6—C8—C9	121.0 (4)	H26B—C26—H26A	109.5
O5—C8—C9	113.0 (4)	N4—C27—C22	124.3 (4)
N2—C9—C10	121.1 (4)	N4—C27—C28	117.3 (4)
N2—C9—C8	111.1 (3)	C22—C27—C28	118.4 (4)
C10—C9—C8	127.8 (4)	N3—C28—C19	119.0 (4)
C9—C10—C11	117.6 (4)	N3—C28—C27	119.9 (4)
C9—C10—H10	121.2	C19—C28—C27	121.0 (4)
C11—C10—H10	121.2		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O9—H9B…O10 ⁱ	0.95	2.01	2.907 (5)	157
O9—H9A…O5	0.95	1.99	2.866 (4)	153
O10—H10B…O9 ⁱⁱ	0.95	2.33	2.907 (4)	119

O10—H10A…O7 ⁱⁱⁱ	0.95	2.11	2.964 (4)	150	
N3—H3A···O8 ^{iv}	0.95	2.00	2.832 (4)	145	
C3—H3…O7 ^v	0.95	2.45	3.304 (5)	150	
C12—H12····O2 ^{vi}	0.95	2.39	3.263 (5)	152	
C17—H17····O9 ^{vi}	0.95	2.41	3.357 (5)	175	

Symmetry codes: (i) -x+1/2, y-1/2, -z+3/2; (ii) -x+1/2, y+1/2, -z+3/2; (iii) x+1, y, z; (iv) x+1/2, -y+3/2, z+1/2; (v) x+1/2, -y+3/2, z-1/2; (vi) x-1/2, -y+3/2, z+1/2.

Fig. 3